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ABSTRACT

Abstract polytopes are mathematical creations which

are defined by three axioms. It has been shown that simple

polytopes are a proper subclass of abstract polytopes.

Hence theorems proving facts about abstract polyropes in

general, prove facts about simple polytopes in particular.

Klee end Walkup [2] showed the following four state-

ments were mathematically equivalent for simple polytopes:

i) Any two vertices of a simple polytope can be joined

by a W (nonreturning) path.
V

ii) A(n,d) < n - d (hirsch conjecture).

iii) A(2dd) _ d

iv) For a Dantzig figure, (P,x,y) , 6p (xy) =

The purpose of this paper is to show that the four j
statements above are equivalent for the larger class of

abstract polytopes as well. Thus, it is possible to

tackle the problem of the well-known Hirsch con3ecture

by applying zhe well defined structure and theorems, of

abstract polytopes to any of the above statements.



1. ]NTRODUCTION

In Adler [1], it was shown that the class of simple polytopes is a proper

subclass of the class of abstract polytopes. Because of the simplicity and

mathematical precision which define abstract polytopes, they become interesting

and practical tools for investigating properties of simple polytopes.

Klee and Walkup [2], showed that the well known Hlirsch conjecture is

mathematically equivalent to three other statements. In this paper it will

be shown that a corresponding set of statements are equivalent for abstract

polytopes, and hence abstract polytope theory may shed zcw light in proving

or disproving the Hirsch conjecture.

The method of proof will bv the method of consecutive implication, i.e.

for statements, i, ii, iii, iv, it is shown i - ii = iii = iv = i . Three

implications are trivially proved. A constructive proof for the fourth impli-

cation is developed strictly from abstract polytope theory and is based on Klee

and Walkup [2].

Finally an example of the construction is presented in the appendix.

Finaly an xampI
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2. NOTATLONS AND DEFINETIONS

Let C be a set of distinct symbols.

Any subset v , of d distinct symbols contained in C is called a

vertex.

(V J denotes the number of symbols in v

Vertices u , v of d symbols are said to be neighbors iff 1u t-hvj d - I

A path from v to vk is a series of vertices vo,V,, *.., Vk s.t.

v. vi+l are neighbors, i = 0, ... , k-i

Definition of an Abstract Polytope

P is a labeled abstract polytope consisting of vertices V(P) iff

(Al) v c V(P) => lvi = d

(A2) v E: V(P) --> for any symbol T E v , exactly one other

vertex w e V(P) , s.t. v - T C w
(A3) For any v0 . vk e V(P) , 3 a path R :v0,v, , vk

s.t. vOn vkc v. V v. c R . (R is called an A3 path.)
11

Note: We will use P also to denote the union of all symbols used in the vertices

of V(P) .

P(n,d) set of all abstract polytopes

S.t. 1PI n ,Iv = d

If v c V(P) and some set S C v such that ISi = k (> 0) , S is said to

generate a d - k face on P ;i.e., Fp(S) , the face generated by S on P, consists

of 'aZ v c V(P) s.t. S C v . It is easily verified that after the k symbols
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common to v e V(Fp(S)) have been dropped we have formed a new abstract polyt-'pe

Q c P(n',d - k) where n' < n -- k . We say Q corresponds to Fp(S) and the

vertices of Q have a one to one correspondence to the vertices of F p(S) , thus

q c V(Q) c;rresponds to q U S e V(FP(S))

6p (x,y) S the distance from x to y on P , i.e., the length of the

shortest path between x and y

Aa (n,d) E the max diameter of P(n,d)%

- max max 6 (x,y)
PeP(n,d) x,yeV(P)

A nonreturning (NR) path from v 0 ,v, .. ,vk on P is a path s.t. the symbol

T e vi ,T Vi+ v. i+ 1 < < k

A Dantzig figure (P,x,y) is an abstract polytope P e P(2d,d) s.t. 3

vertices x , y e V(P) s.t. x fy =p.

I
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3. THEOREN

The following four statements are equivalent for abs:ract polytopes:

i) 9 an NR path between any two vertices x , y r V(P)

ii) A (n,d) < n- da

iii) A (2d,d) < d

iv) For every Dantzig figute (P,x,y) , 6p (x,y) daP

Proof: (by consecutive implication)

(a) i => ii) if 3 an NP. Path between x , y c V(P) then

6p(x,y) < n - (Ix n yl + d) . If xfly = y result follows.

Say x n y = S , ISI = k . Consider F p(S) Then

6 (P)(xS)(PY) < - (d - k) <n -k- (d - k) n - d .

.1% 6p (xy) < n - d V P e P(n,d) .

(b) ii => iii) trivial. Let n = 2d

(c) iii ; iv) 6p(x~y) <_d by iii) But since xfny = 6 , 6p(x,y) > d

. 6 p(x,y) = d

(d) iv => i)

Consider x , y c V(P) . Assume x n y = for coovenience. If x fly = S (# )

consider F p(S) . Aiter eliminating S from each vertex of Fp(S) we have a new

abstract polytope, Q , whose vertices correspond to F p(S) . In particular the

vertices which correspond to x and y have an empty intersection. Thus, we can

apply the following theory to Q and make the corresponding transformation back

to F (S) and hence P.
P

Assume n > 2d .(If n =28 result follows trivially since 6 (x,y) =d .

P1
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Notation

Let M = e- (x U y) ; say IMI = m , i.e., m = n- 2d

Form a set M' of new symbols s.t. T e M => T' c I'V

Now we form P by the algorithm, illustrated in Figure 1.

,
We now show P e (n + m,d + m) . We show the more general fact:

Lemma 1:

P£ e P(n+ j,d + j)

Proof: (by induction)

0N
Trivially P0 E. P(n,d)

Suppose P e P(n + j - l,d + j"- 1).

Consider PJ It is easily verified Al and A2 are satisfied.

To show A3, consider the following threL cases. Suppose u , v E V(P)

Case I: T' e uj , e' v£

Suj- , j-1 C V(Pj- 1) s.t. uj-l = uj - T' , vj- = vj - T'

j-1 j-i j-I-l j-l
Since 3 an A3 path u u0  , ... , u =v on .

Let u! = u."U T' This is the required A3 path on P.

Case II: T' £ u , T' v

By construction, T' 0 vi => T e vi and 3 yj c V(Fj) s.t. yj vjUT T'

By Case 1 3 an A3 path, R ,on Pj from uj to yJ .. The required A3

path from uj to vj is R amended with the edge (yj,vj)

Case III: T' • uj , T' 4

Let yj , zi e V(Pi) be such that yj = uj U T' - T , zj = vj U T' - T



Construction 1

Let j = ,p 0 P , 0 = M ,M' 0  M'

IM
tto

Choose some

T E M,
and

TeM'J

LConstruct p j+1 by

Construct the vertices of I
pj+l as follows

(1) Add T' to alZ v - V(Pj)

(2) For v e V(P3 ) s .

T t v , form vertices in

p j+l by adding T

Mj+l = Mj - T

j+l = M'j -T'

Figure 1



r-'-- - - -.- ,• .~ -. -= • •.-•• _•s r •= .•• -.. .• -•'' - . .... .. . . -• •

We know 3 an A3 path R from yJ to zj on PJ k: y3  
14- .,

0'

j, .. , ,., =z where for f_< i < t , T cw . (It is not necessary
that T E w. for any i or for only one interval.)

Consider the path R : =w, ... ... , =v s.t. for

0 < i < f- I and k + I < i < k ,°. = w. LUT' - T and for f < i < k , . .

It is not difficult to verify U exists and is the required A3 path from

uj to v, on Fj

Corollary 1:

P e P(n + m,d + m) , i.e., P e (2(n- d),(n- d))

We now make the following observations:

Observation 1: 3 nodes x , y e V(P ) s.t. x x UM' , y y U I
Observation 2: As noted in Lemma 1, for w e V(P ) , T' t w • T e w and 3

a vertex y e V(P) s.t. y = w T' - T.

Observation 3: P corresponds to F ,(M')
P

Observation 4: (P ,2: ,y ) is a Dantzig figure. .. Since 6 ,(x ,y ) =

P

d (=d + m) , • an NR path between x and y on P

Notation

Let R be the Nr -on P between x and y .. R x v,

* v d *
d

Let B' =M'N v. , i.e., all primed symbols in v..
v I

A' = M' B'v. v. .

A {T c•M T' e vi,T :
.v
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Observation 5:

T*

Sv. c V(P*) v. y. U B' U A where y. c V(P)
"1 1 3 V. V.

Construction 2:

Form a sequence of vertices R' : wl,..., wd s.t. w. = U A' A A
1

where v R.

Lemma 2:

i) w =x U M' F*(M')

ii) W c F *(M') V..

iii) w, y U M' F ,(M)
d P

iv) w , wi+1  are either neighbors or the same vertex, V.

v) If w. , w14~ are the same vertex, delete one of them from R'

Then R' is an NR path from x U M' to y U M' on F ,(M')

p

Proof:

i) wI vi U - = x x U M F (M')

ii) wi v. UA' -A3i w ,= v. v.

.?YU B' U AvU Av - A (by Observation 5)
Si i

=y. U B' U A' =y• U M' . "w. c F,()•
• v . v .i V1 i
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iii) V,* U A' -Ad d vd v dd d

y U A'* -A
y y

(y U M) U M' - M

y U M' C F ,(M')
P

iv) Consider the transition from v. to v on Rl i+I n Theare are

three possible cases.

Case 1: vi+1 = viU S - S' where S' e m, S

""wi+1 = v,+,U A' - Ai+ v+1

V (A'uýV iI S')~ (AviU s)
= (vi +IU S' S) U A' - A

V. V.

=V. UA' -A
S V. v

"W.

w
Case 2: vi+1 vi U S -T where S E P ,T P

"~~~ " i1=v U A' -A

Vi+1 i+1

=(ViU S - T) U At - AV. V.

z(v.,U A' A)U S T

II
= w. U aS - nT

. w. an are neighbors.
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Caýe 3: vi+1 = v. U S - T' where S • P , T' c '

•" w+ = viU A' - A
i~l i+l v i+A vi+]

=(V 1  S - V')U ( U T'r) (AU T)

(v. U A' - A)U S - TiI V.
w.U S - T

. . wi and wi+I are neighbors.

Since R is an NR path on P , these are the only three

possible cases.

V) Immediate from i - iv). a

Corollary 2:

3 an NR path R fron x to y on P .

Proof:

Immediate from Lemma 2, Pirt V,and Observation 3. 0

i.5

:!I
C
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4. APPENDIX

Example of Construction 1

Suppose we have a Polytope P' as follows: I
AFL EFL

x =ABL -ABT:- YE y DEL I
BCL CDL I

and want NR path from x to y .

Eliminate symbols in common to form face P

AF EF

Px=AB •DE y

BC CD

Iteration 1: Choose. syrboZ FA

AFF' EFF t

ABF' q ABF DEF DEF

BCF ' CDF '
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Iteration 2: Choose symbol C

ACFF' CEFF'

ABCF ABC, BCF CD CI EF.
- • / , i -- CDEF '

BCC'F CC'DI

I

x y

Below are examples of paths R from x to y on P and corresponding

R from x to y on P according to Construction 2.

(1) R * ABC'F' - ABC'F - BCC'F - CC'DF - CDEF

R AB- BC - CDE

(2) R ABC'F' -ABCF' - ACFF' - CEFF' - CDEF

R: AB`--- AF -EF -DE

(3) R* ABC'F' - BCC'F' - CC'DF' - CC'1 F - CDEF

R : AB- BC.-- CD DE

(4) R ABC'F' - AC'FF' - C'EFF' - C'DEF - CDEF

F : AB----AF - EF -DEp..
(5) R ABC'F" BCC'F' - BCC'F - CC'DF - CDEF

R : AB- BC CD-DE

(6) R : ABC'F' - ACIFF' - ACFF' - CEFF' - CDEF

R : AB- AF EF- DE
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